Metrology and Calibration of Mechatronic Systems

Mechatronics Training Curriculum

<u>Relevant partner trainings:</u> Applied Optics, Electronics for nonelectrical engineers, System Architecture, Soft skills for technology professionals,

. . .

www.mechatronics-academy.nl

Mechatronics Academy

- In the past, many trainings were developed within Philips to train own staff, but the training center CTT stopped.
- Mechatronics Academy B.V. has been setup to provide continuity of the existing trainings and develop new trainings in the field of precision mechatronics. It is founded and run by:
 - Prof. Maarten Steinbuch
 - Prof. Jan van Eijk
 - Dr. Adrian Rankers
- We cooperate in the **High Tech Institute** consortium that provides sales, marketing and back office functions.

Metrology and Calibration of Mechatronic Systems

Trainers

- Dr.ir. Rens Henselmans (Dutch United Instruments)
- Dr.ir. Stefan Bäumer (TNO)
- Dr.ir. René Klaver (IBS Precision Engineering)
- Ir. Jef Horijon (Kulicke & Soffa)
- Dr.ir. Adrian Rankers (Mechatronics Academy)

Course Director(s)

- Dr.ir. Rens Henselmans (Dutch United Instruments)
- Dr.ir. Adrian Rankers (Mechatronics Academy)

Global Program

Day	Торіс	Presenter
1	Introduction / Definitions Short Range Sensors	Rens Henselmans Rens Henselmans
	Interferometry Systems Encoder Systems	Stefan Bäumer René Klaver
2	Case Introduction Mechatronic Context	Rens Henselmans Adrian Rankers
	Metrology on System Level	Rens Henselmans
3	System Calibration	Rens Henselmans
	SMD component mounter case Wrap-Up & Closure	Jef Horijon Adrian Rankers

Day 1 (morning)

- Introduction & Metrology definitions ۲
- Short Range Sensors ٢
 - Sensor terminology (range, resolution, sensitivity etc.) ۲
 - Sensor types (capacitive, inductive, optical etc.) ۲

Traceability

method

· A measurement result is linked to the definition of the unit

- each with a specified uncertainty

- by an unbroken series of comparisons (traceability chain & hierarchy)

Traceable measurements are absolute: independent of instrument and

Day 1 (afternoon)

Displacement interferometry (principle, components, error sources etc.)

Day 2 (morning)

- Case introduction
 - Measurement machine for freeform optics
 - Analysis of existing solutions
 - Performance estimation
- Mechatronic context
 - Control theory summary
 - Influence of sensor properties / placement

NANOMEFOS

- <u>N</u>anometer <u>A</u>ccuracy <u>NO</u>n-contact <u>ME</u>asurement of <u>F</u>reeform <u>Optical S</u>urfaces
- MSc and PhD project (TU/e, TNO and VSL)
- · Design and realization of measurement machine

Day 2 (afternoon)

Metrology on System Level

- Design for low uncertainty
- Error types
- Rules of Abbe and Bryan
- System loops
- Quantity of concern

Quantity of concern: NANOMEFOS

mechatronics

brainport

Day 3 (morning)

- System Calibration ٢
 - **Basics**
 - Calibration instruments & artefacts
 - Self-calibration
 - Calibration application examples
 - Use of calibration data

- Direct measurement of the errors

- e.g. error motion of stage measu

 For instance thermal effects, difficult Measure temperature, compensa

Measurement based

Model based

Types of calibration

- Using external reference Periodic /single time calibration w · e.g. Send instruments to NMi
 - · e.g. CMM calibration with inter

- Using internal reference ('des - Machine calibrates itself 'every c · Measure dedicated artefact (e
- · Part of measurement routine (
- · Tool height setting on lathe

Types of calibration

Calibration instruments: Autocollimator Measure angle of mirror Straightedge (Dutch: 'Rei') Spot displacement on CCD Can measure sub-µrad over meters of motion - Metal or granite, down to few µm/m · Can be used with pentaprism · National standard for angular motion True square - Metal or granite Flat - Granite tables: few µm per m² - Optical flats: \emptyset 100 mm at few nm (e.g. λ /20).

Calibration instruments: Artefacts

Parallelism < 1 µm / squareness few µm/m

Available up to Ø500 mm (liquid mercury)

Exercise

Exercise 8.4: How to set a disk sander?

- External calibration: carpenters square or level
- Internal calibration: reversal (auto-calibration)

Exercise: NANOMEFOS Z-axis alignmen

- · Use straightedge with reversal
- · Angle of straightedge known: measure other angle

Closure

- CMM mirror squareness calibration, using CMM itself •
- Procedure:
 - Using single artifact: polygon with four faces.
 - Polygon is measured in four positions

 $\beta_A + \gamma_1 + \gamma_2 = \alpha_{xy}$ $\beta_B + \gamma_3 + \gamma_4 = \alpha_{xv}$ $\beta_c + \gamma_5 + \gamma_6 = \alpha_{xy}$ $\beta_D + \gamma_7 + \gamma_8 = \alpha_{xy}$ Polygon with four faces:

 $\beta_A + \beta_B + \beta_C + \beta_D = 2\pi$ So, angle of mirror table $2\pi + \sum \gamma_k$

From combinations A..D

Metrology and Calibration of Mechatronic Systems - overview

Day 3 (afternoon)

- SMD Component Mounter Case
 - Vision Metrology
 - Calibration of Series Products

Surface Mount Technology

Surface-mount technology (SMT) is a method for producing electronic circuits in which the components are mounted directly onto the surface of a printed circuit board (PCB). An electronic device so made is called a surface-mount device (SMD)

Via the website of our partner High Tech Institute

Metrology and Calibration of Mechatronic Systems - overview